ASAMBLEA PTI AGRO4FOOD

Identificación de compuestos saludables / diana (macro / microelementos / metabolitos de interés) desde el punto de vista nutricional

G.P. Blanch ICTAN-CSIC

gblanch@ictan.csic.es

GRUPO OPERATIVO BIODIF:

BIOFUNCIONALIZACIÓN DE CULTIVOS ESTRATÉGICOS NACIONALES PARA LA MEJORA DE SU COMPETITIVIDAD EN EL MERCADO

PLAN ESTRATÉGICO DE LA PAC - FEADER

Inversión:

Total: 597.805,97 €

Cofinanciación UE: 80%

Cofinanciado por la Unión Europea al 80% con cargo al FEADER, siendo la autoridad encargada de la gestión de la aplicación de la ayuda FEADER la Dirección General de Desarrollo Rural, Innovación y Formación Agroalimentaria del Ministerio de Agricultura, Pesca y Alimentación. Inversión total: 597.805,97 €

R.A. Malvar

P. Revilla

A. Granell

A. J. Monforte

C. Pons

J. de Dios Alché

A.J. Castro

E. Lima

J. Frías

B. de Ancos

C. Martínez-Villaluenga

E. Peñas

G.P. Blanch

Revisión bibliográfica:

1) Identificación de compuestos saludables/<u>diana</u> (macro/microelementos/metabolitos de interés) desde el punto de vista nutricional.

1) Identificación de compuestos saludables/<u>diana</u> (macro / microelementos / metabolitos de interés) desde el punto de vista nutricional.

(Grupos de compuestos/Tipo de maíz (amarillo, morado, dulce)/Metodología analítica)

- ✓ Carotenoides (ß-caroteno(f.inmuno y neurol.), luteína(visión), zeaxantina (enf.cardio))
- ✓ Antocianinas AA (C3G) maíz pigmentado
- ✓ Ácidos fenólicos AA (hidroxicinámicos: ac. ferúlico, p-cumárico)
- ✓ Proteína f. estructural
- ✓ Grasa total- fte E
- ✓ Almidón fte E
- ✓ Fibra -- salud digestiva
- ✓ Minerales (Mg, P, K) (Ca, Zn, Fe, Cu)

1) Identificación de compuestos saludables/<u>diana</u> (macro / microelementos / metabolitos de interés) desde el punto de vista nutricional.

(Grupos de compuestos/Tipo de maíz (amarillo, morado, dulce)/Metodología analítica)

Tabla 6). Principales grupos de compuestos identificados en maíz

COMPUESTOS	COMPUESTO	DETECTADO EN	METODOLOGÍA	Maices estudiados	BIBLIOGRAFIA		
		52.22552	THE TOP OF COURT		 Rodríguez VM, Soengas P, Landa A, Ordás A, Revilla 		
	Carotenoides			Maíz	2013. Effects of selection for color intensity on antioxidan capacity in maize (Zea mays L.). Euphytica 193:339-345,		
Carotenoides	totales	blanco/amarillo/rosa/morado(negro	Espectrofotométrico	blanco/amarillo/rosa/morado/negro	DOI 10.1007/s10681-013-0924-0		
					2) Revilla P, Anibas CM, Tracy WF. 2021. Sweet com		
Carotenoides	REVISION	Maiz dulce		Maíz dulce	research around the World 2015-2020. Agronomy 11, 534 https://doi.org/10.3390/agronomy11030534		
					3)Revilla P, Alves ML, Andelković V, Balconi C, Dinis I,		
					Mendes-Moreira P, Redaelli R, Ruiz de Galarreta JI, Vaz Patto MC, Zilić S, Malvar RA, 2022, Traditional Foods Fro		
					Maize (Zea mays L.) in Europe. Frontiers in Nutrition		
					8:1235. https://www.frontiersin.org/article/10.3389/fnut.2021.6833		
Carotenoides	REVISION	Maices europeos			. DOI=10.3389/fnut.2021.683399		
					Rashmi, MT, Shastry M, Singh NK.2014. Phenotyping maize inbred lines for beta-carotene and determining		
			Espectrofatométrico y		relationship with total carotenoids and kernel colour in		
Carotenoides	B-caroteno v TCC		bCaroteon no especificado		maize. Indian J. Genet., 74(4) Suppl., 631-637 (2014) DC 10.5958/0975-6906.2014.00902 X		
Carotenoides	B-caroteno y TCC		especincado		10.3936/09/3-0900.2/114 MIRIT X		
POLIFENOLES					4) Revilla P, Soengas P, Malvar RA, 2018. Effects of		
					Antioxidant Activity of black maize in corn borer larval		
	Antocianinas		F	Maíz	survival and growth. SJAR 16 (1) # e1004		
Antocianinas	totales		Espectrofotométrico	blanco/amarillo/rosa/morado/negro	http://hdl.handle.net/10261/169524 5) Revilla P. De la Fuente M. Couselo Careira M. Malvar		
					RA. 2023. Maize anthocyanin improves health parameter		
					in gbese rats. Mol 23: 4. 6) Revilla P. VM Rodríguez, P Soengas, Jl Ruiz de		
					Galarreta, A Landa, A Ordás. 2013. Compuestos		
					antioxidantes en el maíz. Agricultura 960: 218-221		
					 Blanch GP, de Pascual-Teresa S, Ruiz del Castillo ML 2023. Study on the phenolic composition and antioxidant 		
			TRATES AS INCOME.		properties of white-, yellow-, and black-corn (Zea mays L.		
Antocianinas	cyanidin-3-O- glucoside	Maíz negro	TPC,TAC, AA (DPPH Y PLC), HPLC-DAD	Maíz blanco/amarillo /negro	foodstuffs, JSFA, 103,13,6263-6271. https://doi.org/10.1002/jsfa.12697		
- unusummitas	giucustuc	THE STAGE OF	TPC,TAC, AA (DPPH Y	suares y arran me y riegio	Blanch GP, Ruiz del Castillo ML. 2021. Effect of Baking		
Antocianinas		Maíz negro	PLC), HPLC-DAD-MS	Maíz blanco/amarillo /negro	Temperature on the Phenolic Content and Antioxidant		

					Activity of Black Corn (Zea mays L.) Bread. Foods 2021, 10,		
			1		1202. https://doi.org/10.3390/foods10061202		
					 Pascual-Teresa S, Santos-Buelga C, Rivas-Gonzalo JC. 		
			1		2002. LC-MS analysis of anthocyanins from purple corn		
	cyanidin-3-				cob. J Sci Food Agric 82:1003-1008.		
Antocianinas	glucoside,	Maíz negro	HPLC-DAD -MS	Maíz negro	https://doi.org/10.1002/jsfa.1143		
			1		9) Blanch GP, Ruiz del Castillo ML. 2021. Effect of Baking		
			1		Temperature on the Phenolic Content and Antioxidant Activity of Black Corn (Zea mays L.) Bread. Foods 2021, 10.		
Flavonol	Quercetip.	Maíz negro	HPLC-DAD	Maíz blanco/amarillo /negro	1202. https://doi.org/10.3390/foods10061202		
riavonoi	600000000	Wall Hegro	THEE DAD	mare dianedyamamilo ynegro	9) Blanch GP. Ruiz del Castillo ML. 2021. Effect of Baking		
			1		Temperature on the Phenolic Content and Antioxidant		
Acidos	Ferúlico, Cafeico,		1		Activity of Black Corn (Zea mays L.) Bread. Foods 2021, 10,		
Fenólicos	Clorogénico	Maíz negro		Maíz blanco/amarillo /negro	1202. https://doi.org/10.3390/foods10061202		
					DIDLIGODADIA		
					BIBLIOGRAFIA		
			1		Martín-Diana AB, García-Casas MJ, Martínez-Villaluenga C, Frías J, Peñas E, Rico D. 2021. Wheat and Oat Brans as		
			1		Sources of Polyphenol Compounds for Development of		
			Método		Antioxidant Nutraceutical Ingredients, Egods 10, 115.		
	Proteina Total	Variedades locales de Lombardía	Kieldabl(AOAC(2000)	No maíz	https://doi.org/10.3390/foods10010115		
					Giupponi L, Leoni V, Colombo F, Cassani E, Hejna M, Rossi		
			1		L, Pilu R. 2021. Characterization of "Mais delle Fiorine"		
			1		(Zea mays L.) and nutritional, morphometric and genetic		
			Dumas method (AOAC		comparison with other maize landraces of Lombardy region		
Proteina.	Proteina Total	Trigo y salvado de avena	2005, method 990.03)	Variedades locales de Lombardía	(Northern Italy). Genet Resour Crop Evol 68:2075–2091 https://doi.org/10.1007/s10722-021-01118-3		
Paramenta.	CLARGON TOTAL	rrigo y salvado de averta	2003, 0000000 330.03)	variedades rocales de combardia	Giupponi L. Leoni V. Colombo F. Cassani E. Heina M. Rossi		
			1		L. Pilu R. 2021. Characterization of "Mais delle Fiorine"		
			1		(Zea mays L.) and nutritional, morphometric and genetic		
			1		comparison with other maize landraces of Lombardy region		
					(Northern Italy). Genet Resour Crop Evol 68:2075–2091		
Grasa	Grasa Total	Variedades locales de Lombardía	Método Saxhlet	Variedades locales de Lombardía	https://doi.org/10.1007/s10722-021-01118-3		
			Porcentaje de almidón		Martín-Diana AB, García-Casas MJ, Martínez-Villaluenga C, Frías J, Peñas E, Rico D, 2021, Wheat and Oat Brans as		
			según: Starch (%) = 100		Sources of Polyphenol Compounds for Development of		
			- [Protein (%) + Fat (%)]		Antioxidant Nutraceutical Ingredients, Ecods 10, 115.		
	Almidón total en %	Variedades locales de Lombardía	100000000000000000000000000000000000000	No maíz	https://doi.org/10.3390/foods10010115		
					Giupponi L, Leoni V, Colombo F, Cassani E, Hejna M, Rossi		
					L, Pilu R. 2021. Characterization of "Mais delle Fiorine"		
					(Zea mays L.) and nutritional, morphometric and genetic		
			kit of Megazyme (Bray,		comparison with other maize landraces of Lombardy region		
Almidón	Almidón total en %	Trigo	Ireland).	Variedades locales de Lombardía	(Northern Italy). Genet Resour Crop Evol 68:2075–2091 https://doi.org/10.1007/s10722-021-01118-3		
Allindon	Paratidon Cotal ell 76	1190	ii ciailaj.	varicoades rocares de combardia	Lee SC, Prosky L, De Vries JW.1992. Determination of		
					total, soluble and insoluble dietary fiber in foods. Enzymatic-		
	Fibra total, soluble		Enzymatic-Gravimetric		Gravimetric method, MES-TRIS buffer; Collaborative study.		
Fibra	e insoluble	Alimentos	method	No maíz	Journal of AOAC International. 75, 395-416.		

1) Identificación de compuestos saludables/diana (macro / microelementos / metabolitos de interés) desde el punto de vista nutricional.

TOMATE

Contenido nutricional y antioxidante en los tomates

licopeno (prevención cancer), **ß-caroteno** (naranja, finmunológica y neurológica) Carotenoides:

fitoeno (defensas), luteína

Polifenoles: piel, antiinflamatorias, antioxidantes.

Flavonoide: Naringenina chalcona (amarilla) es el flavonoide predominante

Flavonol: Quercetina, uno de los flavonoles mas import de piel, Rutina (amarillo)

No Flavonoide: Ac hidroxicinamicos (ac clorogénico, ferúlico, cafeico, p-cumárico)

Ac Ascórbico (antioxidante esencial, apoyar la función inmunológica, promover la síntesis de colágeno y mejorar la absorción de hierro)

Minerales: Fe (salud ósea, la función muscular y transporte de O₂)

Zn (apoya la síntesis de ADN, la función inmunológica y el crecimiento celular)

Ca (función ósea)

Se (defensas antioxidantes y a la función inmunológica)

Variedad y estado de maduración

Tabla. Composición típica (mg 100 g-1 de peso fresco) en diferentes tipos de frutos maduros de tomate para Fe, Ca, Zn, Se, VitC, carotenoides y polifenoles.

	Compound	Tomato type	Natural concentration range in mg/100 g fresh weight	Natural concentration average in mg/100 g fresh weight	References
Minerals	Fe	Fresh consume	0.14-0.79	0.465	13,14
		Processing	0-0.82	0.41	13,14
		Cherry	0.15-0.2	0.175	14,15
		Yellow		0.49	13
		orange		0.47	13
		green		0.51	13
		pink			
		purple			
		brown			
	Zn	Fresh consume	0.05–5.5	2.775	13-15
		Processing	0.05-1.1	0.575	13-15
		Cherry	0.2-0.7	0.45	15,16
		Yellow		0.28	13
		orange		0.14	13
		green		0.07	13
		pink			
		purple			
		brown			
	Ca	Fresh consume	9–19.7	14.35	13-15
		Processing	7–16.3	11.65	13-15
		Cherry	6.1-15.9	11	15,16
		Yellow		11	13
		orange		5	13
		green		13	13
		pink			
		purple			
		brown			
	Se	Fresh consume	0.2e-04 -5.5e-03	2.76E-03	13-15
		Processing	1.3e-03-1.55e-03	1.43E-03	13-15
		Cherry	7e-04-1.1-e03	7.00E-04	15
		Yellow		0.4e-03	13
		orange		0.4e-03	13
		green		0.4e-03	13

		pink			
		purple			
		brown			
Organic acids	Total ascorbic acid	Fresh consume	7.8 - 263	135.4	13-15
	(Vit C)	Processing	12.3-164	88.15	13-15
		Cherry	3-82	42.5	13-15,17
		Yellow		9	13
		orange		16	13
		green		23.4	13
		pink			
		purple			
		brown			
Specialized metabolites	Polyphenols	Fresh consume	Flavonoids Naringenin 7-O-glucoside 0.12-0.15 Naringerin 0.491 -1.296 Naringerin shalsone 0.92-2.81 Kaempferol 0-0.5 Quercetin 4.2e-02-4.39 Quercetin 3-O-rutinoside 1.5e-03-0.22 Rutin 0.54-0.87 HCAS Chlorogenic acid 0.15-3.28 4-Caffeoylquinic acid 1.17-1.17 Caffeic acid 0.13-1.30 Ferulic acid 0.16-0.53 p-Coumaric acid 0 -0.57	Flavonoids Naringenin 7-O-glucoside 0.135 Naringerin 0.8935 Naringerin chalcone 1.865 Kaempferol 0.25 Quercetin 2.216 Quercetin 3-O-rutinoside 1.61 Butin 0.705 HCAS Chlorogenic acid 1.715 4-Caffeoylquinic acid 2.585 Caffeic acid 0.715 Ferulic acid 0.345 p-Coumaric acid 0.285	18-21
		Processing	Flavonoids Naringenin 7-O-glucoside Natingerin Natingerin Natingerin Chalcone 1.69 Kaempferol 0.073-0.159 Quercetin 1.001-1.07 Quercetin 3-O-rutinoside Butin 0.48 HCAS Chlorogenic acid 1.386- 1.476	Flavonoids Naringenin 7-O-glucoside Natingerin Natingerin Chalcone 1.69 Kaempferol 0.116 Quercetin 1.0355 Quercetin 3-O-rutinoside Butin 0.48 HCAS Chlorogenic acid 1.431	18,19,21

1) Identificación de compuestos saludables/<u>diana</u> (macro / microelementos / metabolitos de interés) desde el punto de vista nutricional.

OLIVO

<u>Ácidos grasos</u> monoinsaturados

Compuestos funcionales:

- Tocoferoles Vit E (<u>AA</u>), evita rancidez
- Carotenoides
- Fosfolípidos
- Polifenoles
- Minerales (Se, Zn, Cu, Fe)

1) Identificación de compuestos saludables/<u>diana</u> (macro/microelementos/metabolitos de interés) desde el punto de vista nutricional.

- **✓** Antocianinas
- \checkmark AA
- ✓ Proteĺna/Fibra/Grasa

- ✓ Carotenoides
- **✓** Polifenoles
- ✓ AA (Vitamina C)

- ✓ Ácidos Grasos
- Polifenoles
- Carotenoides
- **✓** <u>AA</u>

• Revisión y estudio del estado del arte de los biofertilizantes empleados hasta el momento y las modificaciones que se han descrito en relación a los compuestos diana.

• Revisión y estudio del estado del arte de los biofertilizantes empleados hasta el momento y las modificaciones que se han descrito en relación a los compuestos diana.

NANOFERTILIZANTES

ASAMBLEA PTI AGRO4FOOD

¡Gracias por vuestra atención!

GRUPO OPERATIVO BIODIF: BIOFUNCIONALIZACIÓN DE CULTIVOS ESTRATÉGICOS NACIONALES PARA LA MEJORA DE SU COMPETITIVIDAD EN EL MERCADO

PLAN ESTRATÉGICO DE LA PAC - FEADER

Inversión:

Total: 597.805,97 €

Cofinanciación UE: 80%

